haliadit ol b et d L

@ https://ntrs.nasa.gov/search.jsp?R=19720007912 2018-07-23T06:25:20+00:00Z

SV 7ot =700 & o

('i

COPY/ ..
N iV S

A

of the 3-RBody Problem

by

x
Robert Haston

Center for Dynamical Systems

Division of Applied Mathemetics
Brown University

. Providence, Rhode Island 0291c

......

* -
_This research was supported by the National -Aeronsutics end Space Adminis-

tration under Grant No. NGR-40-002-015.



singuleritics dus

kY

and time scale such that Lno new Varizbles can be conbinued as con-

vevgent power series in the naw tlmﬂ for times bnyonq the collision

[N

Lew

date, This result is satisfectory from the enalytical point of v 5

but frow the gualitative peint of view one would like to kpow the

phase portrait of solutions near collisions.
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zt step in the qualitati?e gbudy of the Z-body problem
might Ee to study the topology bf the integral sdrféces; that ig, the
romentur, angular momentum and energy. This has been done by Smsle
7). These surfaces are not compact and some solﬁtion;

[10] and Baston

may "run off" {hcse surfaces in finite time and hence Newlhon's squu-

tions of motion do not give rise to flows on theses integral surfaces

Que might guess. that the bad behavior of solutions is due to col]
of the bodies. It is well kuaown that if the total aagular momentum

1}

of the 3-bodies is different from zéro then a simotaneous collision

e

of all three bodies is impossibkle., Thus on

+
n‘ae

®

-zero angular momun+uﬁ one expect~ the only bad behavior of solutions
will be due to binary cellisices. In view of the rzsult that solutions

can ve continued through binary collisions one might hope to medify

n

_the integral surface in scme way so that Newton!

eguations of motion '

liisioans

‘al surfaces with non~



. 2
actually give a flow., The purpese of the present paper is to describe
; how this can be done.
| - o “uLdé collisions in the f.Lf‘""
: in collisions 1s known to have
:
! '
, ace 1t can be neglacced. My
P
; . , . .
| T answer is that the sev of sclubtilons which pass close to coilisions
: .
; does not have neasure zero and that these solul
] .
; - ~studied by TOOU“i.g attention on those soluticns
: . . _
5 lision., Furthermore one can not decide a priori waethsr or nol -a given
E ) _ . .
’ : o initial condition will or will not eventually lead either to collision
f
| _ or Lo & very close approach to collisicn, Hence the full phase por-

trait of the solutions can not be understood without knowing what
happens nesr ¢o0llisi

The techniques used in the present paper were introduced in
[6]. Ve uvse surgery to oxelcise‘a neig borhood of the "binary col-
lision set" (;ée definition j.i)., The neighborhood is in the fora of

an "isolating block” (seg defzdltlo 2 )) We,identify the end points

" R L)

éf ;rbité which cross the b}ock and we stw thet this }dentifiqatioq
%”-‘f-*4'* 5457"h3§“a'gnigue’éxﬁéhsibn*to‘aﬁ:iéeﬁﬁ;fiééffoﬁ nb1c3 pairs the e d powqtu
of “orbits éﬁtering fhé Bloék wbichAead-igfa:binafy CQllision with the
end points of crbits leaving the block which come from a binary col-

~lision, The problem of regularization is the problem of showing that

. ) -~ the identification of the end pcints of crossing ocbits has a con-

e tone
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tlnuous, unigue exu,.sion. W2 use this identi

gap 1 fL by the surgery thus obhainin
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for the 3-body problem. We obiain regularized integral surfaces for

n

the problem on which the 3-body equations of motion induce flows.

question for the planar 3-body problem raised by Birkhoff [1, p. 288]
and again by Wintner [11, Section 438]. -

Throughout the paper we restrict our attention to the planar
3~body problem, The extension of some of cur results to the non-

planar problem may not be triviel,

zZeq

jmde

C. Conley has shown that tripple cellisicns can not be regular

by surgery. A partial discussion of this result is given in section 6,



2. Regularization by Surgery

of vector fields by surgery is discussed in

__ _Regularizatio

[6]. We will give in this section a brief description of this process.,
Let M bea C menifold and let C be a closed subset of M,
We assume throughout this section that X is a COo vector

field defined on M-C, We call C the "singularity" of the vector

field.

Notation 2,13 If a € M-C and 7vy(t) is an integral curve of X

satisfying v(0) = a we denote 7y(t) by the notation (t) = a-t,
More generally if ACM-C and T CIRl and if a+t 1is defined for

each pair (a,t) ¢ A X T we let

AT = {a*t: a ¢ A and % ¢ T}.

Definition 2,2: Suppose that Fg M-C ;éRl is a smooth function and

define F: M-C R by F(a) = I= F(act)|, .- Also define ¥ =G
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k and let

Bo=(xet0 F(x) 0 for j=1

B is an isolabing block For X if for each point x ¢ B, whenever

Fj(x) = 0, and ?1(x) = 0, it is the éase thet Fj(x) > 0C.

(2

Isolating blocks have been sindied in [2], 3], [Ly, f5]

o

Many examples of isolating tlocks and the uszes of isolating Tlocks

are given in the papers cited sbovz., The following two exampl

i}

lustrate how they may naturally occur,
Let N be a corepact Riemanian mznifold and let G be a

A . 1 < : .
Morse functicn G: N.-»R. Let ¥ = grad G. Then if cy and cy

. s o : ‘ ~1 . . .
are two non-critical values of G the set G [C',Ce] is aa isolating

1

block fo» the vector field Y on N. If I 'is the torus znd G

the standard height function oa the forus then the shaded regioa-shown

in figuwre 1 is an isolating block for the gradient flow.

o . Lo .2 . . ..
- Consider the vector field Z on R given'by % =x, ¥

\ 2 -
and let P (x,y) = 1-x  and Fo(x,y) = l_y2. Then B = ((x,y)?

.

Fl(x,y) <0 and Fé(x,y) < 0} is an isolating block for Z "as shown

in figure 1. ' -

and the above definition is rot the most genersl that could be given,

s ii-
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Definit_ion 2,k: Iet B be as in ?‘) and define b = OB
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¢ for some € >0}

b = {x € B: x(0,¢) NB =¢ for some e >0}

.
1

o
=
m

B: x-t ¢ B for all t >0 for vhich x-t is defined}

s

A ={xeB: xt ¢ B Tor 211 t <0 fo

&

which x:t 1is defined}

K “ a =A Nb and a =A Nt
o L+t W er s
Define w: © -a —-b -2 by setting.
‘m(x) = x-0 where ¢ = sup{t > 0: x-t ¢ B}. -

- . Theorem 2.5: 7 1is a homezororphism.

For a proof see [L4] or [9]. This theorem is what makes isolat-



ing blocks useful. An isolating block must certainly isolate something

and the following discussion says what that is.

Definition 2.6: A closed set I C M-C is called an invariant set of X

if I°R1 is defined and if I-Rl = I, An invariant set I of X 1is
said to be isolated -if there exiété én opénréef U cén%aining I such
that | I 1is the maximal invariant éet in U.

It is an easy conseguence of the definiticr of an isolating
block that the maximal invariant set contained in a block is isolatedf

Hence the block "isolates" a certain invariant set (which may sometimes

be empty). Conversely we have the following theorers

Theorem 2,7s If I CM-C is a compact isolated invariant set of X
then there exists an isolating block B such that I is the maximal

invariant set contained in B,
For a proof see [L4].
With this preparation we are now ready to say what it means

. to "regularize" the singularity C.

pefinition 2.8: A closed subsetv_¢l~ which-is rglatively open in C 1is regularigz-

able if there exists an isolating block B C M~C such that for x € M-C

(1) if (t_,t.) dis the maximal interval such that x<(t_,t.)

Oi 1 07 71/
‘is defined and if x-% ->Cl as t —>tl then x*t must .
enter and stay in B as t - t,. Similariy if x-t —aCl
as t -9t0 then x<t must enter and stay in B as ¢ —éto.
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i b -a b -3 admits a unigue exteanslon as a homeo-
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o] uvC

B is a
N obta
(%) ¢

ology.

homecnmorphism,

¢ in 2,8, Then the regulsrized pha%e space Tor X
ined from M-C-int B by identiiying peints x ¢ b
b -More precisely define. an eguivalence relation
by ¥y if x =y or if x =7mw(y) or y ='U(k).
set of eguivalence classes of pOLnt; of M-C-int 3
int B - N be the naturai projection, Give N

Then N is a menifold and p restricied to M-C-B

We identify M-C-B with p{M¥-C~B).

X induces a flow ¢: I X Rl - as follows:
(1) Suppose p-s € M-C-B for each s ¢ [0,%)

(2

(

)

?(p,t)

p(p-t).

o{b) .

. . . -l : . .
D € say ¢ (p) = {x,7{x%)}.

and 1(x)-(0,t) C M-C-B define ¢(p,t)

Suppose

If %<0 and x-(t,0) € M-C-B define 9(p
Extend ¢(p,t) by requiring that

(p(P}T‘ +t \ = @(@.Qp}tl))te)-'

~oe O
et
ani 1

Ths

If

¥
i

1 define

Thus the flow is defined by following an integral curve of

crossing B in zero tim

e and continuin

m
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=
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+
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appropriate integral curve of X.

[ __ The 2-vody problem provides an exzmple of the process of reg-

' .
! ularization by surgery. This example is discussed in [6].
5
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: 5. Thz Planar 3-Body Prcblem

i

i : s ey . - ~
e — - Three point passes nmovein—iths plapeuwnderthe Infivsnceof ———————
|

| their mutual gravitatiocnal attractions. Ve ascume for simplicity that
z each particle has nmnass 1 and that the gravitational ccenstant is equal
EH

E to 1. Thus the state of the system is specified by & point (Q,P) =

t ’ -

‘ (07595,9,D,,0,,P,) € (32)0 . - Here aq. - spzcifies the position of the
3 41) =22 ‘)' —l} 22 i) A = - i &

X Jth particle znd p. spscifies its momentum,

! J

[]

| .
i - . . S ~ - O - E S -
: 3.1: Define C_. = {{Q,F): q. =aqa,} for i,j = 1,23, Dzfine r . =
i . 13 ] 1 J ig

i . ~q and q., =a.-g.. Let C =¢C Uuc,,ucC,,. C 1is the set

; la;-a,] ij T %Y 127 V10 ves

movion can be forpulated as a Hamiltonian
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Define H:

5 :
: 1, 2. 2 2 o -1,
| H(Q,P) = 5(lp)l ™ + Ipol ™ # im5l7) - (rpp + mpy + 253)

H is the Hamilitonian function for the system and the equations of motion

are
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It is convenient to mwke .ihe canonical change of variables

. . 1, - S
74~——~4~—rf—~—~-2_£' h~*~4~44/—79—“—*gfuifr—v~——~ﬂ4c~3«f~I/+—Lp24~4p5)—r*4~~
x o= Q-0 y = (2p. - py - Py)
1D 3v1 U2
1
g = ql+q2+q: W= g(pl 4 pg + pj)

£ 4

Notice that w is one ihird the totzl momentum of the system and =z
- specifies the center of mass of the system., Without loss of generalily
we assumwe that w = z = 0. . In terms of the new varisbles the enérgy |

and argular momentun functions become

3,50 e, x,n,y) = H

3.2 ! + H2 + HB‘
S ‘ i (vl ? - ix}_l) s nl® - e+ (yen - ¢ 7.
260 }ngamy>:%§nkaﬁfw>x<wy’
- The equations of motion are
3.7: E=oney = -g[E 7 - (8-x)fex] 7

., __ - x=2ys+nq - §o= éxle-a - (x-é)]x-él“3

‘These equations are defined on . RO.c whers ¢ = c:'l Ucgu ey =

(el =0 U (lxl =0} U (]t =0l
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'3.10: Define \Wb,aﬂ to be the gquetient sp

“J)e

The planzar Z-Loly preblem is the problem of studying the flow

on R with -singularity € induced by eauations 3%.7. The equaticns’

various values of the parameters h- and . A further rguucLﬂoq is
possible by makiag use of tne symmetry which exists in the problem. In,

what follows we treat &, x, 7

<
o
wn
1]
Q
!_.J
D
>
‘.Ju
Ay

.ables (thus & =

zxt =e 'z where ,z = (&,x,n,y) € &.

Both H aud J are invdriant with respect o this flow, In fact the

flow * is generated by the Hamiltonian function g J. Since the.
Poisscon Bracket [H 2 Jl
SCL ~ L, 2 .

}e

S ident;cally_zero hc 3 -ocdy flow gensr: ted

by H and the flow * commute., Notice also that H(z) = ¥{z) and -

m |
&'
),u

J(z) = J(z) where. z 1is.ths ccuplex conjugate of z. We want tc re-

move this "symmetry" From the problen,

o

ce of Mh,w] modulo

‘the action *. Notice that S = (z e M[h,wl? x|x] 1 (L,0)} is 2

o a . " : 8 '
global surface of section for the flow * on R -C and every orbit

of * meets $ "fctly oncea, Hence «[h w] is diffeomerphic to

: i L 8 v S
_S[“, =8 N ¥h,wl. The 3-body flow on K -C ionduces a flow on §



in the following way:

by the vectors

for most values cf the paramet

clude below . a discussion. of

we will use

1]
b}
[
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1}
[
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=
‘.J'
0
o
D
il

1y Proulem,

lision states

-have.uql.zfg(X“ﬂ§§)J 9

ql)”qgf

angle formed by the three p

- namely those

Recall that-the po

YOy

topclogically characterize tib

nobation 2z — z+t then if w ¢
‘the intersection of the set
obviously restricits to ths suri:

As o firzst step in s

riangle with

L
>~
~—
ii‘\)
o]

AV
Xe]

]

H

sides

S we define w'¥ ¢ = s
{wet) * R~ with §. The
sces S h,m].

1L
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AN

a spheri-
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3.13: Define mw{h,w] = o(¥{h,w]). m[h,w] plays the role of a Hills

regicn in our development, The Tollowing proposition

characterizing

m{h,w} is proven in [7].

: 12 - -1 -1.2
. Proposition 3.1h: m[h o] = {(s,r) ¢ ¥V X (0,=): —;r (sll + 8y + 53 )
5 :
+ 2hw > 0}.

- K3 : ol . ~
m{ h,w] 3is shown in Tigure 2

below for three decreasing values of h < 0!
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figure ?

3.15:

Define 1[h,w] to be the quotient space SO Xm[h,a)]/ ~ where ~

is an equivalence relation defined by 1 X (s,r) ~ -1 X (s,r) whenever



C T T TThe following proposition s essentially proven in [7).

s € OV. Thus £{h,w] is the 3 manifold obtained by sewing two copies

of m{h,w] together along the set m[hyw] N AV X Rl.

Proposition 3.16: S[h,w] is homeomorphic to the space obtained from

2 . o . , '
Z[h,w] X 87 Dby identifying p X 82 to a point whenever ' € ai[h,aﬂ.

Sketech of the proof: Fach point of fih,w specifies the shape, size
= -, L+ & . 2

and orientation of the triangle formsd by the three bodies in the plane,
& y P .

Thus each point of f£[h,w] corresponds to a unique point (€,x) ¢ RA
such that xlx[_l = (1,0). Consider the set of (7,y) such that
2 - 2 :
(a) 1al" + 19l «yn =0+ ug,»)
(®) (x) x (¥). + (&) x (n) = o
Wnen (§,x) cérresponds to a point belonging to the interior of If{h,w]

the set of (m,y) satisfying (a) and (b) is a 2-sphere. Waen (&,x)

corresponds toﬁa poiht beibnging'to the boundary of I[h,w] the set of

:,(W:YD .gati§§ying”(g) an@n(b)uis_a,poiPtAand.W§eni,(§,x) does not cor-

respond to a point in ‘f[h,w] +this set is empty. Thus 3S[h,w

oo

is a

“singular 2-sphere fibre bundle ovef-lz[ﬁ,aﬂ.. This fibre bundle turns

out to be a product bundle,
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k, Regularization of the 3-Body Problem

Recall that the equations of motion 3,8 define a flow with

(]

9]
CF

=
ct

singularity C on R8. In this section we construct three disj
isolating blocks Bi CIR8-C such.that tha sciutions which end in binary
collisions must enter and remain in one of these blocks s the col-~
lision time is approached., We further show that the flow mapplngs
across these blocks can be extended to diffeomorphisms of b; onto

b, for i=1,2,3.

Definition 4,1: Iet 7¥(t) be a solution to the'eqdations 3.7 and sup-

pose that the maximum positive interval of time on which 1 is de-

fined is [O,tl). It is well known [9Q] that 1im o(t) exists where
t >t
L

2 2 2 ,
a(t) = g(lxl +E]7 - x+£). o{t) is the moment of inertia of the system

-(in the 0ld coordinates o = ]ql|2 + Iq2|2 + |q3|2). f 0 < U(tl) < o

then the solution ¥(t) is said to end in a binary collision, It

is well known in this case that the limits 1lim £(%t), lim- x{t),

+ —>tl L ->tl

. lim x(t)-£(t) exist and exactly one of these limits is zero.
1

In what'follOWS*we~défihe f§r<each;'é,>“0 a-set 'ﬁ[e]; We show
" that for sufficiently small € > 0' ghat this set is an isolating block
for collisions of the type where £(t) -0 and we show that the flow
map across B[¢€] .egtends to a diffeomorphism of b+[€] onto b [€].
Let Bl = B[e]. It is clear from the symetry of the problem that we
may similarly construct isolating blocks B2 and B3 for collisions

of the type where x(t) —»0 and where x(t) - &(t) -0 respectively.



In order to define the isolating

to define some functions.

Definition 4,2

(a) Choose a smooth function @z

properties that a(t) < -t

(b) Choose a smooth functicn B

propertiess

. 16a

blocks B[€] it is necessary

(0,®») - (0,1) having the



"binary collision of mass 2 with mass 3 at tiwe ¢
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(1) +7'Ble) <1
(2) p'(%) <1 and B’(ﬁ) =0 if t>1
T ) ey <y T
(c) Define for e >0 ¥ RO-¢ 5 RS by FLE,%,m,y) =
|§}2 - ecf{B(&,x,n,y))B8(47) where = |2x-E].

(d) Define for < >0 G : R8 -zt by Ge(éyx,n:y) =

2

c il - eyl
., 8 _

Ble]l = {(§,%,7,y) € R"-C: F_<0, G, < 0}.

It will be shown that for e

;_ﬂJ

sufficiently small Ble] 1is an isolating

block for the flow on R ~C. Our choice of E 1is motivated by the fol-
lowing considerations. Suppose 7T{(t) 1is an orbit which ends in a

(i.e., |&(L)] »0

1
as t —>tl)‘ Then it is known [9] that x(t) and x{t)-£(t) appreach

finite limits 4s t-_>tl'- Hence there exists 1 < t] such that if

T < t < tl

then F (y(t)) < 0. Furthermore it is kumowa that |n(t)]
€ - ’ . .

approaches infinity as t -+, while y(t) approaches a finite limit

as  t sts 1 such tnat T <t <-tl-

plies Ge(Y(t)) < 0. Therefore we have established the following

~>tl.__Hénce_there exi. T <% i~

proposition.

Proposition k. l: For any e > 0, if y(t) 1is a solution of the equa-

tions 3.7 whose maximal positive interval of existence.is [0,% and

.
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y(t) ends in a binary collision where  1im E(t) = 0, then there exists

1
<ty such that y(t) € B[e] for all t e [T,tl),

Our next objective is to show that B{e] is an isolating

block for sufficient small €.

Proposition L.,5: Given & >0 there exists € >0 such that for any

point z = (£,x,7n,y) belonging to B[e],

(a) ¥(z)

0 dmplies &+q < 8}¢&|]q]

i

(v) G(z) =0 implies £on < 8|&||n|
(e) ¥z >€”
0 implies G(z) >0

(a) G(2)

Proof of (a): ?‘= héeen - R where

R = eap [bx-y - ,Bé-yj - 2(k-y)

| "M)effnl. since’ ¥, <O and -

'F =0 implies that Een = [Jl; R |¢]

G, <0 we compute that |R| < 9¢|&||n| + 2¢|g[[n| snd hence

1 -1 -1
EETRT

| < o (9<—:5 + 2¢). By choosing ¢ sufficiently small we

can make this expression less than &,

Proof of (b):

&= 2ef (8o 8] 2 4 (Ex)enlEox T - 2L (xep) D 4 (5o8) oyl x-€] 0

G =0 if and only if Eenm - % R = 0 where



R = [2e(x-8)+n| &-x| ™ + 2(x-y)| 5| 7 + (x-8)+y]z-8] 2| &

Choose €  so small that lx—§|_5 < 2|x|~5, Notice that by the choice

2 -2
of B, |&l|x| © < e. Hence

e e

IR < Vel nlDuelx) "2 6]% + 2¢) x| (8|2 + 2/«

=

< elel|nl 08 % 21 &l 2.

Therefore Ee1 < (% BTt SR < (8<)| gl lnl.

>0

M

Proof of (c¢): ¥ o= h[éon + E-n) - R, Given & >0 there exists

such that  Eem + £+ 2»(1-6)!gl“l on B[e], To see this we compute that

. P2 S -
fen e god =2 - e T (yen) - g (8| £ox]
By choosing ¢ small we can obtain the inequality

Chen e gl > (1-s)02]nl? - gl h.

where 61 = Bl(e) -0 as € -0,
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Now
2 -1 -1 ¥ -1 i e o =1
Inl™ =+ [e] 77+ [x] 77+ {x-8] 77 - |yl T - yen > (2-85)Ih4 E] 7T
where &, = 8,(t) 20 as € 0. Hence 2|n[2 - |§|'l > (2h + Igl—l)(1"62).
- However, by;choicemoﬁ_~ag~2hﬂ+~}§l:}igwel-§3}¥§L:%-4whepe~v§5-=-6566)7—%0~~4
. l-l

as € - 0. Thus it remains to show that |R] < (L-8)]¢ on B[e] for

sufficiently small e,
= t 2 . 1 -2 2 . »
R =B [9ly] “+(Ex-38)F) + €of'[6(x-y)-3(E-y)1" - 2[2| y| “+h(n-y)+£- 5],
For sufficiently small ¢ the following esstimates hold on B[¢€]:
c -2 2 2 -2
Iyl <31=75, lelinl® <2, lgflxl™ < e
Using these estimates it is easy to show that |&|[R] =0 as e -0,

Hence given & >0 there exists e >0 =such that |R| < 8|§!—l on

B{e]. It follows that F > (M—Oﬁ)lil_l

o}

n Ble] for sufficiently small < > Q.

Proof of (5): G ='2|3.f|2 + 2Y'y'- 9€(iﬁ|2 + ﬁ;ﬁ) 4and
S L SR |
¥ = -(2y+n)|x] 7 - (y-m)|x-¢] 7+ 3x| | 5[X°(2y+n)1 B
& 3(x-8)| x-E] 2(x-8)-(y-n).

We estimate y-¥ > —5€lnl2!x!—3 on B[e], Also 7°% = '5lﬁlgl§§_5 +
56 (E-9)|E] 7+ (ex)|8] 7 +F wnere || < 8| ni end 8(e) -0
as €=0. Fix 0<B8<1, Then G =0 implies |&-n| < 8 &l|nl for

sufficiently small ¢ by (b). We estimate that
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R b R e e e L B e I R R B I P

where &, = el/?-+ 3%e. Since given 8, >0, lﬁlg = (1+E>2)[§|-lL for «

sufficiently small we obtain for small € the inequality

(A2 ) > (-3 g

Hence for small €

.é _>_ —55{)']‘ 2}}(1_5 - (25)(2-6>I1]l2|§‘_3
2 el Tii?‘ §| —5['5|A§|5|xl—3 + 2(2-8)]

- . 3/2
> el 2l e Pra-82771 > 0.

1

-

| s R, 2 1.2 1.1
Proposition 4.7: B[e] is diffeomorphic to (D7-0) X & XD~ X S X R XR

Proof: Define o3 (De-o) X Sl XD X8 XR XR -»Bfe] as follows:

@(dl’sl’dz.’ ;'52: Z,h)i. ‘;-{.gyxy ﬂ; y) where

3 = ea(h)B(l)dl and -
X = XSE where A >0 satisfies the equation
R U |g]2 - hages,.

Then £ = |2x-§|, and F(&,x) < O.
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Observe that {(a,b)

- Iai2 < elb‘z} is diffeomorphic to
o 2 1 ' 3 € \1/2,
D X 8. We mep (dg,sl) €D X8 to (ab) €S  where a = (g / d
“and b = s (14l 2y /2T “pirine WS 0 by the cquation 1Pr(a,b) = |
h+U(¢,x). Finally define

n = ue2(1ee) 2, and y = pl1-e(1ee) M a |21 s

Notice that 17 and y satisfy the relation |y|2 < eln[g and that

H(&,x,m,y) = h. @ is the desired diffeomorphism,

Corollary 4.8: 1b[e] is diffeomorphic to

Sl

1 . 2 i
X 8 x[.(o,l]xéDAU1><_D2]><Sl><Rlle
_=Sl><Sl 1

xR X st xE

X R-l.

It istimportant.to notice that b[e] n {&,x,n,y: &-1 <0} is
X . + 2 1 1 1
diffeomorphic to A X R XS XR XR where

S s S R
A = {(sl,sg);e S

The 3~-body flow on R8-C defines a map T across the bleck

B (see 2.4). Our next goal is to show that ™ admits a unique ex-
tension as a diffeomorphism of b+ onto b ., We introduce new co-

ordinates by a Levi-Civita transformation and perform an isoenergetic

2 .
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reduction to obtain a new vector field which is well behaved. We use

' 12 —
y(u)X:V)-V) = (§ u ,X, V(LL)‘ ’y)"

9 is a canonical transformation of the type used by Levi-Civita.

1] - : ll'
4.10: Fix h ¢ R® and define G € g by

a——

&{u,x,v,y) = |u 2[H o u, x,V,y)-h].

Then G(u,x,v,y) = Al.u]2 + yeuv + [VIE -1 where A = |y|2 - ixl—l -

| x- %ug "L _ h. Define the vector field x, on & by

e 0G T . O o 34 o 0
BESe VRIS ey YU oES
It is well known that 7 takes the surface ({G = 0} to the surface
“{H ='n) ‘and that on (G = 0}, DI(X,) = |u| ex‘ﬁ' where X, is the 3-body
vector field, . ‘

The vector field XG ,1s given explicitly by the equations

h,11s i =2v +yu
v = =280 - yv - (x- %ue)‘x- %uel -3‘ul2
% = 2y u|2 + uv |
§ = -xlxl 2l ? - [xlx PG00 | x- 5071 2002
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Notice that XG is defined when u = O,

Definition 4.12: N[h] = (B[h]) where B[h] = B n {H } Then

d

g[h] = [ (u,x,v,y): ‘ulh.S ea(h)B(1)

2 2 2
[yl “lal ™ < el v

(\v Alul2 + yeuv + |v|2 =1 .

Notice that for € >0 sufficiently small, B[h] is an isolating block for

the vector field XG on the surface (G = 0}. Let T be the map across

ﬁlh] defined by the flow generated by XG.

Y

Proposition 4,13: T is a diffeomcrphism of % onto b .

Lemma 4.1k:  CGiven &> 0 "one can choose B[h] sufficiently small (i.e.

choose € sufficieatly small in the definition of g[b]) so that

1-8 < |v| <148 whenever (u,x,v,y) ¢ g[h].

Proof: Since |y12|u|2 < elv|2 on B[h], we have |yrur] < el/2|V|2.
- We estimate that- |A|u]® < €| v|® + 3|%|"Hu® « [ul®|n]. since
| |“ < co(n)B(2) it follows that. \.__x_l_'fl w2 < e and pence |al|ul® <

- o
er! + 3¢ /2 + € /2 Now since B[h] C (G = 0} we must have

Alu] + yeuv + l*l2 = 1, We have shown that |A|u! +y’uvl <

1/2\|v Ry /2

(e+e (3+lh]). It follows that for ¢ sufficiently small,

1~ 1v|“| < ® which is the desired result,

Lemma %.15: Suppose that y: [0,T] - B[h] is an integral curve of the

vector field X, with (t) = (u(t),=(t),v{t),y(t)). Then T <2
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Proof: For t e (0,7] where =t = Qluol the following estimates can

be obtained using equations 4.11 and lemma k4,14 and the definition of B:

la(t)] <3, o< |u(t)|i§ 7|u0| (this uses h.lh);
|x(t)-x,| <8 ()l xl, |v(e)-y,] <8 ()lyyl,

V() -vo| < 850,

where 6i(t) -0 as e -0 for 1= 1,2,5, Since @ =2v + yu we

have |u(t)| 2»% !uol. However £(7) - £(0) < 20|u0|2 and this impiiés.
that |u(r)]LL > e h)p(4(7)) and hence that ¥{t) ¢ B. This is a con-
tradiction showing that {%t) cannot remain in B for t Eleuol°

This completes the proof.

Proof of Proposition L,13: It is sufficient to show that if y(t) is

an integral curve of Xo with Y(O)-e g+, then y(t) crosses B[h]

- in.a finite -time, - Observe that - @i, ¥ and § are bounded on B[ h].
Hence any integral curve Y(t) of Xg must be bounded over a finite
time interval. SinceA Xé‘ is w1thout qmgularlty in B h], y(t)

-.must either cross: gth] 1n-f1n1te‘t1me—or-must be deflned'over-ansin;~"

finite time interval and remain in gth], However lemma 4,15 rules

out this second possibility. This completes the proof.

Cofollary 4,16: 7 admits a unique extension as a diffeomorphism from

bt to. b7,

b'[h] »b[k] by 7 = 1t t.  Since (DEQKG =

.=.1>

Proof: Define
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2 ) . ~ + + ~
| v X; it follows that 7 =7 on b [h] - a'(h], Hence T is a con-

a continuous extension to all of b'. ILet 3" be the set of points

p in §+ such that the integral curve of X, through p meets the

G
: g . . ~

set {(u,x,v,y): uw =0} as it crosses B. Any point in a  is the

. . . ~orop . . . + . ,
limit of points in b-a and it follows that any point in a is the
PR + + . ~ + + .
limit of points in b =~ a . Since T =7 on b - a the extension
~ -
7T must be unique,

In section 5 we will need to know more about the map 7

b+ —b, The following lemma provides the desired informaticn,

Lemma L4,17: Given & >0 +there exists ¢ >0 such that if
(&,%x,n,y) € b+[e], if angles 8,9 are defined by & = |&|(sin 6, cos 8)

and 1 = |n|(sin @, cos @), and if w(§&,x,n,y) = (§l,xl,nl,yl) then

(V) x=xg] <8ldd, (@ lsl-lell <5,
) y-vyl <elyl, CRIL LN ofnf,
(5) lsl-(e+4(¢_9))| < 8 where §&; =|&,|(sin 6,, cos 6))

(6) [@l-(5¢-26-w)| <8 " where N = [ql|(sin P15 COS P, ).

Proof: It is shown in the proof of 4.15 that (1), (3), and (4) hold,
Making use of the fact that H(éex,n,y) = H(él,xl,nl,yl) one can show
that (2) follows from (1), (3) and (4). Also in 4,15 it is shown that
|vi—v| < 8|lv] for e sufficiently small where 7 (u,v,x,¥) = (£,x%,1,y)
and %(u,v,x,y) = (ul,vl,xl,yl). Using this fact and the definition

of 7 conditions (5) and (6) can be shown to follow,



5. The Topology of the Integral Surfaces

.. In section 3 we describea_ Sih,w X :
¥

fibre bundle over a "Hills region" Z[h,cb]., Qur goal in this section
is to describe the topology of the regularized phase space R[h,w]
for the 3-body flow ou S[h,w]. In figure 3 below we show {[h,w]

for o ;4 0 and h << 0, In this case {[h,w] has three components.

5.1: Define B[h,w,e] = B[e] N S[h,w].

The shaded region represents -the projection of the isolating block

B{h,w,e] into 2[h,w] and the three dotted rays correspond to the

binary collision sets Cl’ C:2 and  Cz.

figure 3

] _ as_a_singular 2-sphere _ _
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We choose ¢ sufficiently small so that @ given in proposition 4.6

is a homeomorphism and B[e] 1is a regularizing block for the singularity

5.2: Define Bl = B[h,a5%e]. Then Bl is an isolating block for the

3-body flow on S[h,w].

5.3¢ Define W, = {(&;%,m,¥) € S[h,w]}: for some (Tll,yl) (E:X:nl;yl)

Bl h,w,€]}.

5.4: Define an equivalence relation ~ on wl - int Bl by setting

z~zg' if z =2zt or if =z € bI and z' =m(z) or if z' ¢ bI and

z =7(z'). Define Wl to be the quotient space (W -int Bl)/~.

It is clear that we may similarly define Wé, Wz, B2 CiWé,

W W , i solating blocks for
35 < W5, W2 and w3° B2 and B3 are 1lsolating blocks for #he flow

on S[h,e] with the property that any solution in §[h,w] which

tends t¢ the binary collision set *Cj . must enter Bj “for j = 2,3.

5.5:’ Define ﬂR[h,aﬂ to be the regularized phase space for the 3-body

.flow on S[h,w]. Then

T b) ' 3 A
R[h,w] = {S[h,w] - U int W,} U { U W.)
j=1 J j=19Y

where the boundary of '?JJ. is identified with the boundary of W,.

We can characterize R[h,w] once we know the topology of the

.A 5
sets Wj and {s[h,w] - U int wj]. The following propositions
J=1

€



characterize the topology of the sets wj and ﬁj,

. _ _Pproposition 5.6: et W =W ;- For_ € >0 sufficiently small the pro- .
1

jection or W into L % is homeomorphic to R X (D2—O) and W is

homeomorphic to r' x (D2-O) x .

Proof: Define P: S[h,w] —5@ 2 by P(&,x,7m,y) = (&,x). Fix x =
(1x],0) and fix t a unit vector, Define M2,E,e) to be the

maximum positive number such that (x,k(x,g,e)g) € P(W). Then

x(x,g;e) = sup{Ar: (a), (b), (), (d) below have a solution “1’y1}°

(2) A2 < ea(n)p(]2x-2E| %)
.
(0) |y]7 < elnl®
(e) (OX(y) + (E)X() = ©
o 2 e
(a) vlnl +y]” + yen =h+ U(ME,x).
Define ka(x,g,e) = max{A: A is a solution of (a)} and define
xl(x,g,e) = max{As A < la(x,g,ej, x'é 2e[x|2|w|_l].
Léﬁmal5,73v if 0 <A< xl(x,g,e) “then 'Sg(h)-= {(n,7)e (n,y) satisfy
(e¢) and (d)} is a 2-sphere,

Proof: It is sufficient to show that the plane C(A) = {(n,y) which

satisfy (¢)} contains a point inside the sphere D(A) = {(n,y)

which .satisfy (d)}. D(A) contains the ball of radius R where R® =

%{h+U(X§,x)]. The plane c(x) is distance p from zero where p2 =
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o - ‘ '
a?([x|2+x_) 1. Thus it is sufficient to show that 02 < R2. For €
sufficiently small and 0 < A < hl(x,g,e) we estimate that R- >
- T '77717—7]: T T T 7;77.777”2v’77 727 Y- T T; T TR L. N T/ e et
3k . The inequality p <R follows from the inequality A <

2 - 1. . .
%le W 2. which holds whenever 2e¢ < ze This completes the proof

of the lemma, The following lemma is also needed:

”

Lemma 5.8: A(x,£,¢) is a continuous function of x and ¢ and
(x,€) ¢ P(W) 4if and only if 0 < |&| < X(x,él&lnl,e)o Furthermore

for w =0, X(x,g,e) = ha(x,gge) and for w £ 0, Mx,E,¢e) < kl(x,g,e),

Proof: Consider the equations

(&) () x (¥ =0 (@) [al® =272

Let xz(x,E,e) = max{As (a), (b), (c)', (d)' have a solution}, For e
sufficiently small the equations (c)' and (d)' approximate the equa-
tions (c¢) and (d) and we must have k(x,g,e) < 2k2(3,€,e). We compute
that kg(x,g,e) = max{ls A < Ka(x,g,e), A< e|x|2|wl-l}. Notice that
for w =0, (b), (c); (d) always have a solution and hence for w = 0,
, *(X,g:e) = }a(x,g,e).a »
Now suppose  # O.. The” 3-sphere SQ(k) varies continuously

with A. Thus if A = Mx,E,¢), SE(X) must intersect only the bound-

. Y . A, L3 -
ry of the cone K= {(n,y) which satisfy (b)}. In this case the e

tions (b), (c), (d) can be written as one equation
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(e) E(r,%,E) >0 where

=
—~
Rl
£
-
Y
~
|

A AN A ~ A l
= sup{e(A,x,&,n,y): N,y €8 } and

e, 8,7, = (120X M2 + OEX(R))

- o 1rer YRR,

Notice that e(k,x,g,n,y) is continuous in all its variables and that

o 3 A .
for 0 <A< ke(x,g,e), we haye Y <0, It follows that E 1is contlnqogs and
that E is monotonically decreasing in A for fixed (x,g). Therefore
X(x,g,e) = max{As E(X,X,E)‘E 0} is also continuous and (x,8) ¢ P(W)
if and only if O < A < Mx,8,¢).

We now give the proof of proposition 5.6« Define f: R~ X

(Dg-o) - P(W) by £(t,d)-= (&,x) where x = t(1,0) and ¢&
x(x,dldl-l,e)d. f 1is the desired homeomorphism. For (§&,x) e P(W)
{(n,y): (&,%x,m,y) e W} is a 2-sphefe by thé previous lemmas., Thus W
is a 2-sphere fibre bundle over P(W) and the 2-sphere fibres do not

"twist". Hence W 1is homeomorphic to Rl‘x (D?-O) X 82.

. 3 2 2 2 2 2
Definition 5.7¢ Let X = {x e R': x +x; < 1, X HRHXs > 1/2, -2 <%z < 2}
Let Xl = {x e X3 -1 < x5 < 1}. Let - Y = {x ¢ X3 x§+x§_= 1} and let
(Q,Q,XB) be coordinates on S' X Y where 6 and @ are angular )

variables, Define
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R

= {(Q,Q,XB) e st xY: o+ T/2 <9 <6 - 17/2)

f."_;a/~l~ -7 by

f(e,CP,XB) = (6 + J‘"(@-e), 5@“29-77"}(3).

Define {Rl X P5 - Sl X DB] to be the space obtained from Sl X X by

identifying points of Sl X Y which correspond to each other by the map

o

f. The notation is meant to be suggestive since this space is homeo-

morphic to Rl X f§ (where P5 denotes real projective space) minus

>3

a set homeomcrphic to Sl X D7,

Proposition 5.8: ILet W = Wy

and let B =B For ¢ sufficiently

lo

small there exists a homeomorphism o¢¢ W - int B —>Rl X Sl,x X and a

homeomorphism v: Rl X S1 X X —aRl X Sl X X such that the diagram

oty o
T Y

o(b™) —i‘ff—al a(p7)

commutes, Notice that W - int B depends on e,

1

Corollary 5.9: W, =W is homeomorphic to (Rl X P3 - Sl X DB).

Proof: The homeomorphism is y-o.

Before giving the proof of 5.8 we include some motivation.
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~

Fix & a unit vector and fix x'= (|x|,0). Then the part of

W over the ray {(Xg,x)i 0 <A< K(X,E,e)} is a 2-sphere fibre pundle

as shéﬁn in figuréih below, B iﬁtersects each fibré for b <A<
Mx,&,¢/2) in a shaded annulus as shown., Thus the part of W - int B
over the ray is homeomorphic to a solid cylinder minus an open ball as

is also shown in figure L

D

TN
BN e n .
(77 ,f/f’) i K_/
_ o
o T T T T
T \\\\-___ﬂx’//f
O /"\{X)g)éi ’\{xiglé)

figure k4



Proof of proposition 5.8: Suppose (&,x,7M,y) € W - int B, If

o<|E < x(x,'é,e/e) where £ = glgl‘l, define o(&,x,1,y) =

o SR o
(‘Xl,§,€|ﬂllyl n,t) where

t = l+(l—|§|)[k(x,€,e/2)]—l if sgn(xey) = 1 and Iyl2 > e|n|2

-1 and [y|2‘2 elm

1-(1-1 6] )[M(x,8,¢/2)17 "if  sgn(x-y)

L2 -2 . N 2 2
eyl "Inl Tsgn(xey) if |E] = M(x,8,¢/2) and || < <)
We have seen previously that

Y = {(§,%,7,y) € W-int B: Mx,E,e/2) <& < A(x;8,¢)}

* - 2 n ~
is homeomorphic to Rt x s x §° x [Mx,E,¢/2), AMx,8,€)]. Thus extend

1

c tomap Y onto Rl X S8 XX It can bejshown that o 1isg the desired honeco-

l°

morphism., Observe that if (&,x,7n,y) € 0B then o &,x,M,y) =
-1 -1 ‘

(=t elel 75 mlnl 775 8).

In order to construct the homeomorphism ¥ we need the fol-

-lowing:

Lemma 5.,10: Given © >0, for e >0 sufficiently small the map cno-l
is within & of the map f. More precisely, if (l|x|,0,9,t) ¢ o(b¥%)

where 6,0 are angle variables let

-1
oro (IXI:G:Q:t).= (Ix‘l:elywlytl))
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and let

(1, 6,0,1) = ([x]5,6,,0,,t).
Then

[yl Dol | < 81, [6,-t5] < 8, [0,-6,] < B

and [Q)l-cpgl <‘ ol
Proof: For e sufficiently small lemma 4,17 implies that

Lol < Byl lyywl < 8yfsl,

Hgl"lgzll < 61 and Hﬂll"‘ﬂgH <61°

-~

It follows that ltl-t2| < & for small .e, (We use the fact that

AN

x(x,g,e) becomes less and less dependent on £ as e —0.) Lemma 4,17

‘also implies that ‘91—92! < 8% and l®14$é|:< & for e sufficiently

. small since. ¢ "preserves' the angle yariables,.@,@.

We now finish the proof of 5.8, It follows from 4.5 (a) and
(b) and the definition of o 'that o(7%) is diffeomorphic and very
close to o N /™. Thus we can choose a homeomorphism Yi:Jy(+-ﬁ

6(b+) which is close to the identity. Define yé:‘o(b') >/ by

T, = Gﬁc_l-yiof'l. Y, 1is close to the identity by lemma 5.10. Then

1 1 1

Yy U 1) is 2 homeomorphism of R~ X S X Sl X R~ onto itself which

is close to the identity. Furthermore the diagram



_M-'- T EM—

W ] e

+

commutes, Since L8] §] Y, 1is close to the identity, Ty §] Yo extends

1 1
to a homeomorphism ¥ of R X § X X onto itself which is the

1 1 1
identity outside a neighborhood of R XS5 X S X Rlo Y 1is the de-

sired homeomorphism, This completes the proof,
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6. The Isolating Block for Tripple Collision

- The well known Lagrange-Jacobi identity can be used to show
that there exists an isolating block such that any corbit which ends in

a tripple collision must enter and remain in this block,

. 8
6.1: Define I: Ro-C -»R' by

I(g,x,ﬂ,}f) = g(ﬁlgle + 3lxl2 - )‘l'g"x).

In terms of the variables q. and p;, I = lqllg . ‘qe!g sl

The Lagrange-Jacobl identity is
I(E,%,m,y) = U(E,x) + 2H(E,x,m,y) = U+an,

Notice that y(t) = is a solution of equations 3.7 which ends in tripple

collision as t - %, (i.e.

only if I(y(t)) -0 as t -t

(t)] -0, '|vx_(t)[ ~0 as t ot) if and

O°..

. 6.2z Define;-Bh[€].= t(é,x,n,y):.l(g,g,n,y)~e < 0}. Every solution

which ends in tripple collision must eventually enter and remain in

B)_‘.[ €] °

Proposition 6.3: For e >0 .sufficiently small By[e] is an isolat-

ing block for the 3-body flow on R8-C.

Proof: Choose ¢ sufficiently small so that I(&,x,1,y) < ¢ implies
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that U(&,x) + 2h > 0. Then .i >0 'on' Bu[e] and hence Bh[é] is an
1solat1ng block

Recall that tripple collision can oinly occur when the totai
angular momentum is zero., Hence consider the 3-body fiow on S[h 0].
After regularization of binary collisions one obtains as before the
regularized phase space R[h,0] and an induced flow on R[h,0]. How-
ever tﬁis new flow still has a singularity 5ue to tripple coliisions,
Bh = Bu[e] N S[h,0] can be considered as an isolating block for the
flow in R[h,0]. C. Conley. has_ shown that the flow map T2 bZ—aZ -
bh-ah does not admit a cdﬁf;nuouc extension as a map from bl onto
bi. Thus tripple collisions can not be geometrically regularized,
This result compliments and in fact implies the classical result that
solutions to equatioﬁs 3,7 cannot in general be analytically con-
tinued beyond tripple collisions., Conley further shows that for each
point (&,x) with. {§|2 + |x12 suff:'..cientlyi small, there exists a

choice of velocities (nl;yl) such that the orbit througn the point

(§;x,nl,yl) »ends in tripple cqllision. These results depénd on some

facts about the topology of b; and bZ. The following proposition

" ‘topologically characterizes these sets.

Proposition 6,4

(a) 1b; is homeomorphic to ‘(Se—ﬁD) 82 U E[Rl X P5 -
1'D5 2 . .

ST X D'] where S -3D denotes the 2-sphere with three disks remcved

and where the boundary of (82—5D) X 82 is identified in the obvious

way with the boundary of 3[R- X»P5 - Sl X D?].
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(b) bz is homeomorphic to
T (5%3D) xD_U 3[(-=,0] X P’ - ' x D]

z
where D_ denotes the lower hemisphere of Sg, [(-=,0] X P5 - st x gy

denotes the space obtained from Sl X X_ Dby identifying points via the

map f as in 5. (X =XN{xc¢ R5: x; <0}). We identity

5
{B(SQ-BD } XD with 5[8(81 X D?)] where B(Sl X D?) denotes

1 e 2.2 1 ' '
87 X {x € Xs X 4%, =3 and *s < o}.

Sketch of the proof: Using 5.8 choose 1L (Wi - int Bi) —aRl X [Sl X X]

for i = 1,2,3 to be a2 homeomorphism such that the diagram

. Y- '.'
. i 1 1
(Wi = int Bi) ~———————%} R™ x [~ X X]

i - J
~ i R RS
W, ——=> R~ X [R™ X - 87 xD7')
commutes where i- and j are the natural projections and -?E- is induced-
by LFE It can be shown that there exists a homeomorphism k of Rl X

(Sl X X) onto itself which is the identity on the factor (Sl X X) and
. ) . . 1 1
which takes 7v,(b, N (Wi - int B,)) onto (r) X (S X X) for some r e R",

It follows that j-k-yi: b) 0 (Wi - int Bi) - (r) X [Rl XP -8 xD'] is

e



-

)
a homeomorphism, (bh - U wi) is easily seen to be homeomorphic to
i=1 : : 3
(S2—5D) X 82. Assertion (a) follows since b) = (bh - U wi) v (bh n
‘ i=1

To prove assertion (b) one shows that bz - U

i=]1

2 .
to (5°-3D) X D_. The homecmorphism jekev;: by N (W, - int B.) -
1

W. 1is homeomorphic

R X [Rl x P - st X D5] takes bz n (Wi - int Bi) into (r) X%

[(-2,0] X Pj - Sl X D?]. Assertion (b) follows since

’

) U (b)) f )
W)U (o, 0 UW,).
R

+ +
bh = (bl¥ .

nCow

i
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